

PEMFC Freeze Start

DoE Freeze Start Workshop February 2005

Ballard Power Systems Inc., R&D

Freeze-start in PEMFCs

- Freeze-Start Issues
- Progress at Ballard
- Avenues for Further progress

1. Freeze-Start Issues

Some Freeze-start Issues

- Reactions are inherently slower at low temperature (cathode reaction, proton conduction, mass transport); all reducing the cell voltage
- Ice blockage in the unit cell can starve reactants and severely reduce fuel cell performance
- The stack must warm up to a temperature where ice blockages can melt – strongly related to thermal mass
- High fuel efficiency requirements restricts the amount of energy (hydrogen or battery power) that can be spent preparing the system for a freeze-start

Example of slow freeze-start caused by ice blockage

Elapsed Time (Second)

Designing MEAs to tolerate ice blockages (electrocatalyst improvement)

Designing plates to remove water

- Liquid water in the plates can freeze and cause blockages which prevent the reactant from reaching the MEA
- The "flow visualization tool" (clear cell) can be used to optimize liquid water removal, both during regular operation and during shutdown.
- The operation of the cell during subzero start-ups has also been observed

2. Freeze-Start Progress

Freeze-start progress at Ballard

- The following freeze-starts are demonstrated without assistance from the system (i.e. no added heat)
 - 8 second start-up (time to 50% power), from a uniform stack temperature of -15°C
 - Freeze-start from a uniform stack temperature of -30°C also demonstrated
- Freeze-storage down to -40°C, with multiple freeze/thaw cycles and no loss of performance has been demonstrated

Recent improvements in freeze-start efficiency

Freeze-start from -30°C

Start-up from -30°C Optimized water management System trade-offs required

3. Research Paths

Summary

- Over the years freeze-start has been a challenging problem for fuel cell vehicles. Improving freeze-start has required an integrated approach:
 - MEA improvement
 - Plate design
 - Stack hardware design
 - Operation condition optimization
 - Operation protocol optimization
 - System component design
- As a result, significant progress has been made in performing fast, robust start-ups from lower temperature
- Continued fundamental understanding is needed to improve performance at temperatures below -25°C